

U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

Carbon Dioxide Utilization Portfolio Review

Ian Rowe Technology Manager April 6, 2023

Agenda: Thursday and Friday

Day 4 - THURSDAY APRIL 6, 2023				
Start Time (MT)	End Time (MT)	Title	Organization	Speaker
10:00 AM	10:10 AM	Technology Area Introduction	BETO	Ian Rowe
10:10 AM	10:30 AM	CO2 Consortium Project Management	NREL	Michael Resch
10:30 AM	11:00 AM	Feasibility Study of Utilizing Electricity to Produce Intermediates from CO2	NREL	Gary Grim
11:00 AM	11:30 AM	Market, Resources, and Environmental and Energy Justice of CO2-to-Fuels Technologies	NREL	Ella Zhou
11:30 AM	12:00 PM	Economics and Sustainability of CO2 Utilization Technologies with TEA and LCA	ANL	Michael Wang
12:00 PM	1:00 PM	Lunch	All	
1:00 PM	1:20 PM	Electrocatalytic CO2 Utilization	NREL	Jack Ferrell
1:20 PM	1:50 PM	An efficient, scalable process for the electrochemical reduction of CO2 to formate	NREL	KC Neyerlin
1:50 PM	2:20 PM	Electrode and Membrane Materials for CO2 Electrolyzers A Molecular Approach	ANL	Ksenia Glusac
2:20 PM	2:50 PM	Integration of CO2 Electrolysis with Microbial Syngas Upgrading	NREL	Michael Resch
2:50 PM	3:00 PM			
3:00 PM	3:30 PM	Bioconversion of Syngas from Electrochemical CO2 Reduction to SAF	LBNL	Eric Sundstrom
3:30 PM	4:00 PM	Biological conversion of formic acid for CO2-to-Fuels	NREL	Christopher Johnson
4:00 PM	4:30 PM	CO2 valorization via rewiring carbon metabolic network	NREL	Wei Xiong
4:30 PM	5:00 PM	Multiphysics CFD for design and scale- up of gas bioreactors	NREL	Hari Sitaraman
	5:00 PM	End of Day/Closed Door Comment Review Session	Reviewers	

Day 5 – FRIDAY APRIL 7, 2023				
Start Time (MT)	End Time (MT)	Title	Organization	Speaker
8:30 AM	8:45 AM	Technology Area Daily Intro	BETO	
8:45 AM	9:15 AM	Production Of Bioproducts from Electrochemically-Generated C1 Intermediates	Lanzatech	Jason Bromley
9:15 AM	9:45 AM	Development of a scalable, robust electrocatalytic technology for conversion of CO2 to formic acid via microstructured materials	Montana State University	Lee Spangler
9:45 AM	10:15 AM	Integrating Chemical Catalysis and Biological Conversion of Carbon Intermediates for Deriving Value Added Products from Carbon Dioxide	Johns Hopkins University	Michael Betenbaugh
10:15 AM	10:30 AM			
10:30 AM	11:00 AM	Electrolyzers For CO2 Conversion from BioSources	Dioxide Materials	Rich Masel
11:00 AM	11:30 AM	PEM CO2 Electrolyzer Scaleup to enable MW-Scale Electrochemical Modules	Twelve	Sadia Kabir
11:30 AM	12:00 PM	Electrochemical Production of Formic Acid from Carbon Dioxide in Solid Electrolytes	University of Delaware	Feng Jiao
12:00 PM	1:00 PM			

Peer Review Panel

ENERGY Energy Efficiency & Renewable Energy

Affiliation	Previous Peer Review Experience
University of Michigan	Lead Reviewer; 2021 Panelist
Carbon Direct	New
Department of Energy	New
Queen's University	New
Air Protein	New
SolEXS Consulting LLC	New
	University of Michigan Carbon Direct Department of Energy Queen's University Air Protein

Bioenergy Technologies Office

- Mission Statement: develop and demonstrate technologies to accelerate GHG emissions reductions through the cost-effective, sustainable use of biomass and waste feedstocks across the U.S. economy.
- Three Strategic Priorities: 1) Decarbonizing Transportation 2) Decarbonizing Industry 3) Other beneficial uses (agriculture, CDR, etc.)
- Divided into 4 Technology Programs:
 - Renewable Carbon Resources
 - Conversion
 - Systems Development and Integration
 - Data, Modeling and Analysis

THE U.S. NATIONAL DECARBONIZATION A Joint Strategy to

Transform Transportation

1 icon represents limited long-term opportunity 2 icons represents large long-term opportunity 3 icons represents greatest long-term opportunity	BATTERY/ELECTRIC	® Hydrogen	SUSTAINABLE LIQUID FUELS
Light Duty Vehicles (49%)*		-	TBD
Medium, Short-Haul Heavy Trucks & Buses (~14%)		©	
Long-Haul Heavy Trucks (~7%)		@ @ @	a a
Off-road (10%)		©	
Rail (2%)		© ©	a a
Maritime (3%)		© © †	
Aviation (11%)		©	
Pipelines (4%)		TBD	TBD

U.S. DEPARTMENT OF ENERGY

DOE/EE-2635 September 2022

Roadmap

FY2023 Budget Authority = \$280M

Renewable Carbon Resources

FY2023: \$77,900,000 Conversion Technologies

FY2023: \$100,000,000 Systems
Development
and Integration

FY2023: \$92,600,000

Data, Modeling, and Analysis

FY2023: \$9,500,000

BETO Applied R&D

TRL Basic principles observed and reported

1:
TRL Technology concept and/or application formulated

2:
TRL Analytical and experimental critical function and/or

3: characteristic proof of concept
TRL Component and/or breadboard validation in a laboratory

TRL Component and/or breadboard validation in a relevant

5: environment

4:

TRL System/subsystem model or prototype demonstration in

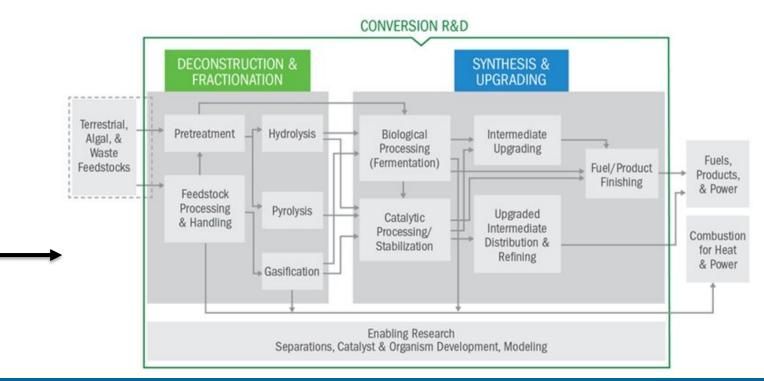
6: a relevant environment

environment

TRL System prototype demonstration in an operational

7: environment

TRL Actual system completed and qualified through test and


8: demonstrated

TRL Actual system proven through successful mission

9: operations

Pathways and unit operations focused R&D

Applied R&D support in BETO: Technology Readiness level ~2-5

Conversion R&D

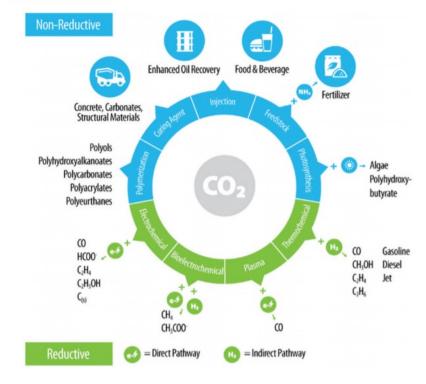
Strategic Goal: decarbonize the U.S. economy by developing efficient and economical biological and chemical technologies to convert renewable carbon resources into bioenergy and renewable chemicals and materials.

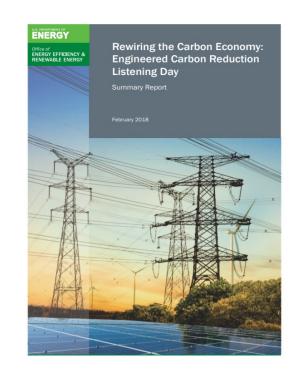
Strategies:

- Develop gaseous platforms
- Develop sugar and lignin platforms
- Develop oil platforms
- Develop targeted chemical production platforms
- Develop bioplastic design and plastic recycling platforms
- Develop waste management and environmental remediation strategies

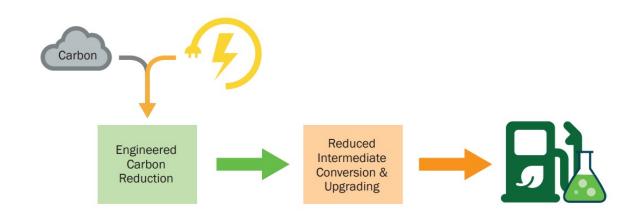
CO₂ Utilization R&D Portfolio

Why CO₂? US Renewable carbon needs


- 36B gallons of SAF = 600M tons of biomass
- ~9B gallons of marine fuel (EIA 2019) = 150M tons of biomass
- ~5B gal of diesel (~10% of today's use) = 80M tons of biomass
- 100M tons of chemicals (~50% of today's market) =
 400M tons of biomass
- ~ 500M tons of carbon removal via BECCS or BiCRS
 = 500M tons of biomass (assumes roughly half of CDR uses biomass)


- To meet the needs of our hardto-electrify sectors, we will need a lot of renewable carbon.
- Biomass is likely limited and cannot meet the entirety of that demand
- CO₂ offers an additional vast supply of carbon

TOTAL = 1.8B tons of biomass


- Started investigating CO₂U in 2017 with a workshop and some initial seed projects
- Closely examined past and current R&D occurring at other DOE Offices (FECM, ARPAe, SC)
- Identified the state of technology, R&D gaps, and the rightsized approach for BETO expertise

Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO₂ utilization†

- CO₂ represents a potential alternative renewable carbon feedstock for fuels and chemicals which need to be decarbonized
 - PRO: abundant resource with potential for very low carbon footprint
 - CON: no energy, early TRL stage in comparison to other renewable feedstocks and relies heavily on the availability of renewable electricity

Two-part strategy:

CO₂ reduction to C1 intermediates

- Catalyst development
- Electrochemical cell design and scale-up
 - TEA/LCA

Intermediate upgrading to fuels and chemicals

- Microbial engineering for C1 fermentation
 - Reactor design
 - Process integration
 - TEA/LCA

Thursday April 6th – National Lab Projects (AOPs)

Day 4 - THURSDAY APRIL 6, 2023				
Start Time (MT)	End Time (MT)	Title	Organization	Speaker
10:00 AM	10:10 AM	Technology Area Introduction	ВЕТО	Ian Rowe
10:10 AM	10:30 AM	CO2 Consortium Project Management	NREL	Michael Resch
10:30 AM	11:00 AM	Feasibility Study of Utilizing Electricity to Produce Intermediates from CO2	NREL	Gary Grim
11:00 AM	11:30 AM	Market, Resources, and Environmental and Energy Justice of CO2-to-Fuels Technologies	NREL	Ella Zhou
11:30 AM	12:00 PM	Economics and Sustainability of CO2 Utilization Technologies with TEA and LCA	ANL	Michael Wang
12:00 PM	1:00 PM			
1:00 PM	1:20 PM	Electrocatalytic CO2 Utilization	NREL	Jack Ferrell
1:20 PM	1:50 PM	An efficient, scalable process for the electrochemical reduction of CO2 to formate	NREL	KC Neyerlin
1:50 PM	2:20 PM	Electrode and Membrane Materials for CO2 Electrolyzers A Molecular Approach	ANL	Ksenia Glusac
2:20 PM	2:50 PM	Integration of CO2 Electrolysis with Microbial Syngas Upgrading	NREL	Michael Resch
2:50 PM	3:00 PM			
3:00 PM	3:30 PM	Bioconversion of Syngas from Electrochemical CO2 Reduction to SAF	LBNL	Eric Sundstrom
3:30 PM	4:00 PM	Biological conversion of formic acid for CO2-to-Fuels	NREL	Christopher Johnson
4:00 PM	4:30 PM	CO2 valorization via rewiring carbon metabolic network	NREL	Wei Xiong
4:30 PM	5:00 PM	Multiphysics CFD for design and scale- up of gas bioreactors	NREL	Hari Sitaraman
	5:00 PM	End of Day/Closed Door Comment Review Session		

- Twelve projects, all part of the new CO₂ Reduction and Upgrading for e-fuels Consortium
- Approximately \$10M annually
- Began late Q1 2022
- A combination of a few existing projects and several new starts resulting from FY21 lab call

Friday April 7th – Funding Opportunity Awards

Day 5 - FRIDAY APRIL 7, 2023				
Start Time (MT)	End Time (MT)	Title	Organization	Speaker
8:30 AM	8:45 AM	Technology Area Daily Intro	BETO	
8:45 AM	9:15 AM	Production Of Bioproducts from Electrochemically-Generated C1 Intermediates	Lanzatech	Jason Bromley
9:15 AM	9:45 AM	Development of a scalable, robust electrocatalytic technology for conversion of CO2 to formic acid via microstructured materials	Montana State University	Lee Spangler
9:45 AM	10:15 AM	Integrating Chemical Catalysis and Biological Conversion of Carbon Intermediates for Deriving Value Added Products from Carbon Dioxide	Johns Hopkins University	Michael Betenbaugh
10:15 AM	10:30 AM			
10:30 AM	11:00 AM	Electrolyzers For CO2 Conversion from BioSources	Dioxide Materials	Rich Masel
11:00 AM	11:30 AM	PEM CO2 Electrolyzer Scaleup to enable MW-Scale Electrochemical Modules	Twelve	Sadia Kabir
11:30 AM	12:00 PM	Electrochemical Production of Formic Acid from Carbon Dioxide in Solid Electrolytes	University of Delaware	Feng Jiao
12:00 PM	1:00 PM			

- Six projects from two different FOAs
 - FY18 Rewiring Carbon Utilization (\$1.5M each)
 - FY20 Scalable CO₂ Electrocatalysis (\$2.5M each)
- Approximately \$13M total
- Industry and Academia leads

Questions?

CO₂ Reduction and Upgrading for Efuels Consortium

CO₂ reduction to intermediates

- An efficient and scalable process for the electrochemical reduction of CO2 to formate (NREL)
- Electrode and Membrane Materials for CO2
 Electrolyzers: Methanol (ANL)
- Bioconversion of Syngas from Electrochemical CO2 Reduction (LBNL)

CO₂ Intermediate upgrading

- Multiphysics CFD for design and scale-up of gas bioreactors that utilize CO2 (NREL)
 - Integration of CO2 Electrolysis with Microbial Syngas Upgrading (NREL)
- Biological conversion of formic acid (NREL)
 - Bioconversion of Syngas from Electrochemical CO2 Reduction (LBNL)

Enabling analyses

- Markets, Resources, and Environmental and Energy Justice of CO2-to-Fuels Technologies (NREL)
 - Economics and Sustainability of CO2 Utilization Technologies with TEA and LCA (ANL/NREL)